Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Immunity ; 56(5): 998-1012.e8, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37116499

RESUMO

Cytosolic innate immune sensing is critical for protecting barrier tissues. NOD1 and NOD2 are cytosolic sensors of small peptidoglycan fragments (muropeptides) derived from the bacterial cell wall. These muropeptides enter cells, especially epithelial cells, through unclear mechanisms. We previously implicated SLC46 transporters in muropeptide transport in Drosophila immunity. Here, we focused on Slc46a2, which was highly expressed in mammalian epidermal keratinocytes, and showed that it was critical for the delivery of diaminopimelic acid (DAP)-muropeptides and activation of NOD1 in keratinocytes, whereas the related transporter Slc46a3 was critical for delivering the NOD2 ligand MDP to keratinocytes. In a mouse model, Slc46a2 and Nod1 deficiency strongly suppressed psoriatic inflammation, whereas methotrexate, a commonly used psoriasis therapeutic, inhibited Slc46a2-dependent transport of DAP-muropeptides. Collectively, these studies define SLC46A2 as a transporter of NOD1-activating muropeptides, with critical roles in the skin barrier, and identify this transporter as an important target for anti-inflammatory intervention.


Assuntos
Dermatite , Metotrexato , Camundongos , Animais , Metotrexato/farmacologia , Inflamação , Peptidoglicano/metabolismo , Células Epiteliais/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Imunidade Inata , Mamíferos
2.
Immunity ; 56(5): 1115-1131.e9, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36917985

RESUMO

Intestinal IL-17-producing T helper (Th17) cells are dependent on adherent microbes in the gut for their development. However, how microbial adherence to intestinal epithelial cells (IECs) promotes Th17 cell differentiation remains enigmatic. Here, we found that Th17 cell-inducing gut bacteria generated an unfolded protein response (UPR) in IECs. Furthermore, subtilase cytotoxin expression or genetic removal of X-box binding protein 1 (Xbp1) in IECs caused a UPR and increased Th17 cells, even in antibiotic-treated or germ-free conditions. Mechanistically, UPR activation in IECs enhanced their production of both reactive oxygen species (ROS) and purine metabolites. Treating mice with N-acetyl-cysteine or allopurinol to reduce ROS production and xanthine, respectively, decreased Th17 cells that were associated with an elevated UPR. Th17-related genes also correlated with ER stress and the UPR in humans with inflammatory bowel disease. Overall, we identify a mechanism of intestinal Th17 cell differentiation that emerges from an IEC-associated UPR.


Assuntos
Estresse do Retículo Endoplasmático , Mucosa Intestinal , Células Th17 , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Células Th17/citologia , Células Th17/metabolismo , Diferenciação Celular , Humanos , Animais , Camundongos , Camundongos Transgênicos , Antibacterianos/farmacologia
3.
Nature ; 603(7903): 907-912, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296854

RESUMO

The microbiota modulates gut immune homeostasis. Bacteria influence the development and function of host immune cells, including T helper cells expressing interleukin-17A (TH17 cells). We previously reported that the bile acid metabolite 3-oxolithocholic acid (3-oxoLCA) inhibits TH17 cell differentiation1. Although it was suggested that gut-residing bacteria produce 3-oxoLCA, the identity of such bacteria was unknown, and it was unclear whether 3-oxoLCA and other immunomodulatory bile acids are associated with inflammatory pathologies in humans. Here we identify human gut bacteria and corresponding enzymes that convert the secondary bile acid lithocholic acid into 3-oxoLCA as well as the abundant gut metabolite isolithocholic acid (isoLCA). Similar to 3-oxoLCA, isoLCA suppressed TH17 cell differentiation by inhibiting retinoic acid receptor-related orphan nuclear receptor-γt, a key TH17-cell-promoting transcription factor. The levels of both 3-oxoLCA and isoLCA and the 3α-hydroxysteroid dehydrogenase genes that are required for their biosynthesis were significantly reduced in patients with inflammatory bowel disease. Moreover, the levels of these bile acids were inversely correlated with the expression of TH17-cell-associated genes. Overall, our data suggest that bacterially produced bile acids inhibit TH17 cell function, an activity that may be relevant to the pathophysiology of inflammatory disorders such as inflammatory bowel disease.


Assuntos
Bactérias , Ácidos e Sais Biliares , Doenças Inflamatórias Intestinais , Bactérias/metabolismo , Diferenciação Celular , Trato Gastrointestinal/microbiologia , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Interleucina-17 , Ácido Litocólico/metabolismo , Ácido Litocólico/farmacologia , Células Th17
4.
Immunity ; 55(1): 145-158.e7, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34879222

RESUMO

Children with autism spectrum disorders often display dysregulated immune responses and related gastrointestinal symptoms. However, the underlying mechanisms leading to the development of both phenotypes have not been elucidated. Here, we show that mouse offspring exhibiting autism-like phenotypes due to prenatal exposure to maternal inflammation were more susceptible to developing intestinal inflammation following challenges later in life. In contrast to its prenatal role in neurodevelopmental phenotypes, interleukin-17A (IL-17A) generated immune-primed phenotypes in offspring through changes in the maternal gut microbiota that led to postnatal alterations in the chromatin landscape of naive CD4+ T cells. The transfer of stool samples from pregnant mice with enhanced IL-17A responses into germ-free dams produced immune-primed phenotypes in offspring. Our study provides mechanistic insights into why children exposed to heightened inflammation in the womb might have an increased risk of developing inflammatory diseases in addition to neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista/imunologia , Linfócitos T CD4-Positivos/imunologia , Cromatina/metabolismo , Microbioma Gastrointestinal/imunologia , Inflamação/imunologia , Interleucina-17/metabolismo , Intestinos/imunologia , Transtornos do Neurodesenvolvimento/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Transtorno do Espectro Autista/microbiologia , Criança , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Feminino , Humanos , Imunização , Inflamação/microbiologia , Camundongos , Transtornos do Neurodesenvolvimento/microbiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/microbiologia
5.
Cell Host Microbe ; 29(9): 1366-1377.e9, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34416161

RESUMO

Bile acids act as signaling molecules that regulate immune homeostasis, including the differentiation of CD4+ T cells into distinct T cell subsets. The bile acid metabolite isoallolithocholic acid (isoalloLCA) enhances the differentiation of anti-inflammatory regulatory T cells (Treg cells) by facilitating the formation of a permissive chromatin structure in the promoter region of the transcription factor forkhead box P3 (Foxp3). Here, we identify gut bacteria that synthesize isoalloLCA from 3-oxolithocholic acid and uncover a gene cluster responsible for the conversion in members of the abundant human gut bacterial phylum Bacteroidetes. We also show that the nuclear hormone receptor NR4A1 is required for the effect of isoalloLCA on Treg cells. Moreover, the levels of isoalloLCA and its biosynthetic genes are significantly reduced in patients with inflammatory bowel diseases, suggesting that isoalloLCA and its bacterial producers may play a critical role in maintaining immune homeostasis in humans.


Assuntos
Bacteroidetes/metabolismo , Ácidos e Sais Biliares/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Fenantrenos/metabolismo , Linfócitos T Reguladores/imunologia , Diferenciação Celular/fisiologia , Cromatina/metabolismo , Fatores de Transcrição Forkhead/genética , Humanos , Doenças Inflamatórias Intestinais/patologia , Família Multigênica/genética , Regiões Promotoras Genéticas/genética , Transdução de Sinais/fisiologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/citologia
6.
Cell Host Microbe ; 29(3): 408-424.e7, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33434516

RESUMO

Bariatric surgery is the most effective treatment for type 2 diabetes and is associated with changes in gut metabolites. Previous work uncovered a gut-restricted TGR5 agonist with anti-diabetic properties-cholic acid-7-sulfate (CA7S)-that is elevated following sleeve gastrectomy (SG). Here, we elucidate a microbiome-dependent pathway by which SG increases CA7S production. We show that a microbial metabolite, lithocholic acid (LCA), is increased in murine portal veins post-SG and by activating the vitamin D receptor, induces hepatic mSult2A1/hSULT2A expression to drive CA7S production. An SG-induced shift in the microbiome increases gut expression of the bile acid transporters Asbt and Ostα, which in turn facilitate selective transport of LCA across the gut epithelium. Cecal microbiota transplant from SG animals is sufficient to recreate the pathway in germ-free (GF) animals. Activation of this gut-liver pathway leads to CA7S synthesis and GLP-1 secretion, causally connecting a microbial metabolite with the improvement of diabetic phenotypes.


Assuntos
Cirurgia Bariátrica , Microbioma Gastrointestinal/fisiologia , Fígado/metabolismo , Animais , Diabetes Mellitus Tipo 2 , Gastrectomia , Vida Livre de Germes , Peptídeo 1 Semelhante ao Glucagon , Células Hep G2 , Humanos , Íleo/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Calcitriol/genética , Sulfotransferases/metabolismo
9.
Cell ; 180(1): 33-49.e22, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31813624

RESUMO

Gut-innervating nociceptor sensory neurons respond to noxious stimuli by initiating protective responses including pain and inflammation; however, their role in enteric infections is unclear. Here, we find that nociceptor neurons critically mediate host defense against the bacterial pathogen Salmonella enterica serovar Typhimurium (STm). Dorsal root ganglia nociceptors protect against STm colonization, invasion, and dissemination from the gut. Nociceptors regulate the density of microfold (M) cells in ileum Peyer's patch (PP) follicle-associated epithelia (FAE) to limit entry points for STm invasion. Downstream of M cells, nociceptors maintain levels of segmentous filamentous bacteria (SFB), a gut microbe residing on ileum villi and PP FAE that mediates resistance to STm infection. TRPV1+ nociceptors directly respond to STm by releasing calcitonin gene-related peptide (CGRP), a neuropeptide that modulates M cells and SFB levels to protect against Salmonella infection. These findings reveal a major role for nociceptor neurons in sensing and defending against enteric pathogens.


Assuntos
Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Nociceptores/fisiologia , Animais , Epitélio/metabolismo , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/microbiologia , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/metabolismo , Nódulos Linfáticos Agregados/inervação , Nódulos Linfáticos Agregados/metabolismo , Infecções por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia
10.
Nature ; 576(7785): 143-148, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31776512

RESUMO

Bile acids are abundant in the mammalian gut, where they undergo bacteria-mediated transformation to generate a large pool of bioactive molecules. Although bile acids are known to affect host metabolism, cancer progression and innate immunity, it is unknown whether they affect adaptive immune cells such as T helper cells that express IL-17a (TH17 cells) or regulatory T cells (Treg cells). Here we screen a library of bile acid metabolites and identify two distinct derivatives of lithocholic acid (LCA), 3-oxoLCA and isoalloLCA, as T cell regulators in mice. 3-OxoLCA inhibited the differentiation of TH17 cells by directly binding to the key transcription factor retinoid-related orphan receptor-γt (RORγt) and isoalloLCA increased the differentiation of Treg cells through the production of mitochondrial reactive oxygen species (mitoROS), which led to increased expression of FOXP3. The isoalloLCA-mediated enhancement of Treg cell differentiation required an intronic Foxp3 enhancer, the conserved noncoding sequence (CNS) 3; this represents a mode of action distinct from that of previously identified metabolites that increase Treg cell differentiation, which require CNS1. The administration of 3-oxoLCA and isoalloLCA to mice reduced TH17 cell differentiation and increased Treg cell differentiation, respectively, in the intestinal lamina propria. Our data suggest mechanisms through which bile acid metabolites control host immune responses, by directly modulating the balance of TH17 and Treg cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ácido Litocólico/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Ácido Litocólico/química , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th17/citologia , Células Th17/imunologia , Células Th17/metabolismo
11.
Immunity ; 49(2): 225-234.e4, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30119996

RESUMO

Antiviral immunity in Drosophila involves RNA interference and poorly characterized inducible responses. Here, we showed that two components of the IMD pathway, the kinase dIKKß and the transcription factor Relish, were required to control infection by two picorna-like viruses. We identified a set of genes induced by viral infection and regulated by dIKKß and Relish, which included an ortholog of STING. We showed that dSTING participated in the control of infection by picorna-like viruses, acting upstream of dIKKß to regulate expression of Nazo, an antiviral factor. Our data reveal an antiviral function for STING in an animal model devoid of interferons and suggest an evolutionarily ancient role for this molecule in antiviral immunity.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/virologia , Quinase I-kappa B/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Infecções por Picornaviridae/imunologia , Animais , Linhagem Celular , Dicistroviridae/imunologia , Proteínas de Drosophila/genética , Quinase I-kappa B/genética , Proteínas de Membrana/genética , Fatores de Iniciação de Peptídeos/genética , Interferência de RNA , Fatores de Transcrição/metabolismo
12.
J Immunol ; 199(1): 263-270, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539433

RESUMO

Tracheal cytotoxin (TCT), a monomer of DAP-type peptidoglycan from Bordetella pertussis, causes cytopathology in the respiratory epithelia of mammals and robustly triggers the Drosophila Imd pathway. PGRP-LE, a cytosolic innate immune sensor in Drosophila, directly recognizes TCT and triggers the Imd pathway, yet the mechanisms by which TCT accesses the cytosol are poorly understood. In this study, we report that CG8046, a Drosophila SLC46 family transporter, is a novel transporter facilitating cytosolic recognition of TCT, and plays a crucial role in protecting flies against systemic Escherichia coli infection. In addition, mammalian SLC46A2s promote TCT-triggered NOD1 activation in human epithelial cell lines, indicating that SLC46As is a conserved group of peptidoglycan transporter contributing to cytosolic immune recognition.


Assuntos
Citosol/imunologia , Proteínas de Drosophila/metabolismo , Imunidade Inata , Peptidoglicano/imunologia , Simportadores/metabolismo , Fatores de Virulência de Bordetella/imunologia , Animais , Linhagem Celular , Parede Celular/imunologia , Parede Celular/metabolismo , Citosol/metabolismo , Drosophila/imunologia , Drosophila/microbiologia , Escherichia coli/fisiologia , Células HEK293 , Humanos , Peptidoglicano/química , Peptidoglicano/metabolismo , Transdução de Sinais , Fatores de Virulência de Bordetella/química , Fatores de Virulência de Bordetella/metabolismo
13.
Mol Cells ; 40(1): 73-81, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28152299

RESUMO

The γ-secretase complex represents an evolutionarily conserved family of transmembrane aspartyl proteases that cleave numerous type-I membrane proteins, including the ß-amyloid precursor protein (APP) and the receptor Notch. All known rare mutations in APP and the γ-secretase catalytic component, presenilin, which lead to increased amyloid ßpeptide production, are responsible for early-onset familial Alzheimer's disease. ß-amyloid protein precursor-like (APPL) is the Drosophila ortholog of human APP. Here, we created Notch- and APPL-based Drosophila reporter systems for in vivo monitoring of γ-secretase activity. Ectopic expression of the Notch- and APPL-based chimeric reporters in wings results in vein truncation phenotypes. Reporter-mediated vein truncation phenotypes are enhanced by the Notch gain-of-function allele and suppressed by RNAi-mediated knockdown of presenilin. Furthermore, we find that apoptosis partly contributes to the vein truncation phenotypes of the APPL-based reporter, but not to the vein truncation phenotypes of the Notch-based reporter. Taken together, these results suggest that both in vivo reporter systems provide a powerful genetic tool to identify genes that modulate γ-secretase activity and/or APPL metabolism.


Assuntos
Secretases da Proteína Precursora do Amiloide/análise , Secretases da Proteína Precursora do Amiloide/metabolismo , Drosophila/enzimologia , Secretases da Proteína Precursora do Amiloide/genética , Animais , Drosophila/genética , Feminino , Imuno-Histoquímica , Masculino , Mutação , Receptores Notch/metabolismo , Transdução de Sinais
14.
Biochem Biophys Res Commun ; 465(4): 845-50, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26319556

RESUMO

NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase (NMDMC) is a bifunctional enzyme involved in folate-dependent metabolism and highly expressed in rapidly proliferating cells. However, Nmdmc physiological roles remain unveiled. We found that ubiquitous Nmdmc overexpression enhanced Drosophila lifespan and stress resistance. Interestingly, Nmdmc overexpression in the fat body was sufficient to increase lifespan and tolerance against oxidative stress. In addition, these conditions coincided with significant decreases in the levels of mitochondrial ROS and Hsp22 as well as with a significant increase in the copy number of mitochondrial DNA. These results suggest that Nmdmc overexpression should be beneficial for mitochondrial homeostasis and increasing lifespan.


Assuntos
Aminoidrolases/genética , Aminoidrolases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Longevidade/genética , Longevidade/fisiologia , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Animais , Animais Geneticamente Modificados , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Corpo Adiposo/metabolismo , Feminino , Genes de Insetos , Masculino , Mitocôndrias/metabolismo , Mutação , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
15.
Biochem Biophys Res Commun ; 456(2): 676-82, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25511696

RESUMO

Metabolic modifications during the developmental period can extend longevity. We found that malic enzyme (Men) overexpression during the larval period lengthened the lifespan of Drosophila. Men overexpression by S106-GeneSwitch-Gal4 driver increased pyruvate content and NADPH/NADP(+) ratio but reduced triglyceride, glycogen, and ATP levels in the larvae. ROS levels increased unexpectedly in Men-overexpressing larvae. Interestingly, adults exposed to larval Men-overexpression maintained ROS tolerance with enhanced expression levels of glutathione-S-transferase D2 and thioredoxin-2. Our results suggest that metabolic changes mediated by Men during development might be related to the control of ROS tolerance and the longevity of Drosophila.


Assuntos
Proteínas de Drosophila/biossíntese , Drosophila melanogaster/crescimento & desenvolvimento , Longevidade/fisiologia , Malato Desidrogenase/biossíntese , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Glutationa Transferase/metabolismo , Glicogênio/metabolismo , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Longevidade/genética , Malato Desidrogenase/genética , NADP/metabolismo , Ácido Pirúvico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/metabolismo , Triglicerídeos/metabolismo
16.
J Biol Chem ; 289(29): 20092-101, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24891502

RESUMO

In Drosophila, the Imd pathway is activated by diaminopimelic acid-type peptidoglycan and triggers the humoral innate immune response, including the robust induction of antimicrobial peptide gene expression. Imd and Relish, two essential components of this pathway, are both endoproteolytically cleaved upon immune stimulation. Genetic analyses have shown that these cleavage events are dependent on the caspase-8 like Dredd, suggesting that Imd and Relish are direct substrates of Dredd. Among the seven Drosophila caspases, we find that Dredd uniquely promotes Imd and Relish processing, and purified recombinant Dredd cleaves Imd and Relish in vitro. In addition, interdomain cleavage of Dredd is not required for Imd or Relish processing and is not observed during immune stimulation. Baculovirus p35, a suicide substrate of executioner caspases, is not cleaved by purified Dredd in vitro. Consistent with this biochemistry but contrary to earlier reports, p35 does not interfere with Imd signaling in S2* cells or in vivo.


Assuntos
Caspases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados , Caspase 8/metabolismo , Caspases/química , Caspases/genética , Linhagem Celular , Drosophila/genética , Drosophila/imunologia , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Feminino , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Especificidade por Substrato
17.
Oxid Med Cell Longev ; 2012: 854502, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22997544

RESUMO

A better understanding of the aging process is necessary to ensure that the healthcare needs of an aging population are met. With the trend toward increased human life expectancies, identification of candidate genes affecting the regulation of lifespan and its relationship to environmental factors is essential. Through misexpression screening of EP mutant lines, we previously isolated several genes extending lifespan when ubiquitously overexpressed, including the two genes encoding the fatty-acid-binding protein and dodecenoyl-CoA delta-isomerase involved in fatty-acid ß-oxidation, which is the main energy resource pathway in eukaryotic cells. In this study, we analyzed flies overexpressing the two main components of fatty-acid ß-oxidation, and found that overexpression of fatty-acid-ß-oxidation-related genes extended the Drosophila lifespan. Furthermore, we found that the ability of dietary restriction to extend lifespan was reduced by the overexpression of fatty-acid-ß-oxidation-related genes. Moreover, the overexpression of fatty-acid-ß-oxidation-related genes enhanced stress tolerance to oxidative and starvation stresses and activated the dFOXO signal, indicating translocation to the nucleus and transcriptional activation of the dFOXO target genes. Overall, the results of this study suggest that overexpression of fatty-acid-ß-oxidation-related genes extends lifespan in a dietary-restriction-related manner, and that the mechanism of this process may be related to FOXO activation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Animais , Isomerases de Ligação Dupla Carbono-Carbono/genética , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Dodecenoil-CoA Isomerase , Proteínas de Drosophila/genética , Metabolismo Energético , Proteínas de Ligação a Ácido Graxo/genética , Ácidos Graxos/química , Fatores de Transcrição Forkhead/metabolismo , Longevidade , Estresse Oxidativo , Inanição
18.
Mech Ageing Dev ; 133(5): 234-45, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22366109

RESUMO

In an initial preliminary screen we identified factors associated with controlling Drosophila aging by examining longevity in adults where EP elements induced over-expression or antisense-RNA at genes adjacent to each insertion. Here, we study 45 EP lines that initially showed at least 10% longer mean lifespan than controls. These 45 lines and a daughterless (da)-Gal4 stock were isogenized into a CS10 wild-type background. Sixteen EP lines corresponding to 15 genes significantly extended lifespan when their target genes were driven by da-Gal4. In each case, the target genes were seen to be over-expressed. Independently derived UAS-gene transgenic stocks were available or made for two candidates: ImpL2 which is ecdysone-inducible gene L2, and CG33138, 1,4-alpha-glucan branching enzyme. With both, adult lifespan was increased upon over-expression via the GeneSwitch inducible Gal4 driver system. Several genes in this set of 15 correspond to previously discovered longevity assurance systems such as insulin/IGF-1 signaling, gene silencing, and autophagy; others suggest new potential mechanisms for the control of aging including mRNA synthesis and maturation, intracellular vesicle trafficking, and neuroendocrine regulation.


Assuntos
Drosophila melanogaster/genética , Regulação da Expressão Gênica , Longevidade/genética , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Animais , Autofagia/genética , Drosophila melanogaster/metabolismo , Elementos Facilitadores Genéticos , Feminino , Masculino , Regiões Promotoras Genéticas , Transdução de Sinais/genética
19.
Nature ; 454(7205): 771-5, 2008 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-18594510

RESUMO

Homoiotherms, for example mammals, regulate their body temperature with physiological responses such as a change of metabolic rate and sweating. In contrast, the body temperature of poikilotherms, for example Drosophila, is the result of heat exchange with the surrounding environment as a result of the large ratio of surface area to volume of their bodies. Accordingly, these animals must instinctively move to places with an environmental temperature as close as possible to their genetically determined desired temperature. The temperature that Drosophila instinctively prefers has a function equivalent to the 'set point' temperature in mammals. Although various temperature-gated TRP channels have been discovered, molecular and cellular components in Drosophila brain responsible for determining the desired temperature remain unknown. We identified these components by performing a large-scale genetic screen of temperature preference behaviour (TPB) in Drosophila. In parallel, we mapped areas of the Drosophila brain controlling TPB by targeted inactivation of neurons with tetanus toxin and a potassium channel (Kir2.1) driven with various brain-specific GAL4s. Here we show that mushroom bodies (MBs) and the cyclic AMP-cAMP-dependent protein kinase A (cAMP-PKA) pathway are essential for controlling TPB. Furthermore, targeted expression of cAMP-PKA pathway components in only the MB was sufficient to rescue abnormal TPB of the corresponding mutants. Preferred temperatures were affected by the level of cAMP and PKA activity in the MBs in various PKA pathway mutants.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Drosophila melanogaster/fisiologia , Corpos Pedunculados/metabolismo , Transdução de Sinais , Temperatura , Animais , Temperatura Corporal/genética , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Drosophila melanogaster/genética , Atividade Motora/genética , Atividade Motora/fisiologia , Corpos Pedunculados/enzimologia
20.
Br J Haematol ; 142(5): 827-30, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18510677

RESUMO

Mesenchymal stromal cells (MSCs) have gained widespread popularity in cell therapy, but their development into clinical products has been impeded by the scarcity of cell-specific markers. We previously explored transcriptome and membrane proteome of MSCs, from which fibroblast activation protein alpha (FAP) was recognized as a prime surface marker candidate. The present study showed that FAP was constitutively expressed on MSCs, but not on other cells. FAP immunoselection yielded homogeneous MSCs from cryopreserved bone marrow (BM). These results suggest that FAP serves as a surface protein marker that can singly define MSCs from BM and possibly from other sources.


Assuntos
Células da Medula Óssea , Gelatinases/metabolismo , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Serina Endopeptidases/metabolismo , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Endopeptidases , Citometria de Fluxo , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA